Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Cancer Lett ; 590: 216845, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38589004

RESUMO

Pancreatic adenocarcinoma (PDAC) is highly resistant to conventional chemotherapeutic interventions, resulting in exceptionally low survival rates. The limited efficacy can in part be attributed to dose limitations and treatment cessation urged by toxicity of currently used chemotherapy. The advent of targeted delivery strategies has kindled hope for circumventing off-target toxicity. We have previously reported a PDAC-specific mesoporous silica nanoparticle (MSN) containing a protease linker responsive to ADAM9, a PDAC-enriched extracellularly deposited protease. Upon loading with paclitaxel these ADAM9-MSNs reduced side effects both in vitro and in vivo, however, disappointing antitumor efficacy was observed in vivo. Here, we propose that an efficient uptake of MSNs by tumor cells might underlie the lack of antitumor efficacy of MSNs functionalized with linker responsive to extracellular proteases. Harnessing this premise to improve antitumor efficacy, we performed an in silico analysis to identify PDAC-enriched intracellular proteases. We report the identification of BACE2, CAPN2 and DPP3 as PDAC enriched intracellular proteases, and report the synthesis of BACE2-, CAPN2- and DPP3-responsive MSNs. Extensive preclinical assessments revealed that paclitaxel-loaded CAPN2- and DPP3-MSNs exhibit high PDAC specificity in vitro as opposed to free paclitaxel. The administration of paclitaxel-loaded CAPN2- and DPP3-MSNs in vivo confirmed the reduction of leukopenia and induced no organ damage. Promisingly, in two mouse models CAPN2-MSNs reduced tumor growth at least as efficiently as free paclitaxel. Taken together, our results pose CAPN2-MSNs as a promising nanocarrier for the targeted delivery of chemotherapeutics in PDAC.


Assuntos
Calpaína , Portadores de Fármacos , Nanopartículas , Paclitaxel , Neoplasias Pancreáticas , Dióxido de Silício , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Dióxido de Silício/química , Humanos , Animais , Paclitaxel/farmacologia , Paclitaxel/administração & dosagem , Nanopartículas/química , Linhagem Celular Tumoral , Calpaína/metabolismo , Portadores de Fármacos/química , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos , Porosidade , Secretases da Proteína Precursora do Amiloide/metabolismo , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Camundongos Nus , Feminino
2.
Int J Mol Sci ; 24(13)2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37445886

RESUMO

Pancreatic adenocarcinoma (PDAC) remains largely refractory to chemotherapeutic treatment regimens and, consequently, has the worst survival rate of all cancers. The low efficacy of current treatments results largely from toxicity-dependent dose limitations and premature cessation of therapy. Recently, targeted delivery approaches that may reduce off-target toxicities have been developed. In this paper, we present a preclinical evaluation of a PDAC-specific drug delivery system based on mesoporous silica nanoparticles (MSNs) functionalized with a protease linker that is specifically cleaved by PDAC cells. Our previous work demonstrated that ADAM9 is a PDAC-enriched protease and that paclitaxel-loaded ADAM9-responsive MSNs effectively kill PDAC cells in vitro. Here, we show that paclitaxel-loaded ADAM9-MSNs result in off-target cytotoxicity in clinically relevant models, which spurred the development of optimized ADAM9-responsive MSNs (OPT-MSNs). We found that these OPT-MSNs still efficiently kill PDAC cells but, as opposed to free paclitaxel, do not induce death in neuronal or bone marrow cells. In line with these in vitro data, paclitaxel-loaded OPT-MSNs showed reduced organ damage and leukopenia in a preclinical PDAC xenograft model. However, no antitumor response was observed upon OPT-MSN administration in vivo. The poor in vivo antitumor activity of OPT-MSNs despite efficient antitumor effects in vitro highlights that although MSN-based tumor-targeting strategies may hold therapeutic potential, clinical translation does not seem as straightforward as anticipated.


Assuntos
Adenocarcinoma , Nanopartículas , Neoplasias Pancreáticas , Humanos , Doxorrubicina/farmacologia , Dióxido de Silício , Neoplasias Pancreáticas/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Peptídeo Hidrolases , Porosidade , Portadores de Fármacos/farmacologia , Proteínas de Membrana , Proteínas ADAM , Neoplasias Pancreáticas
3.
Pharmaceutics ; 14(2)2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35214121

RESUMO

Pancreatic cancer is a devastating disease with the worst outcome of any human cancer. Despite significant improvements in cancer treatment in general, little progress has been made in pancreatic cancer (PDAC), resulting in an overall 5-year survival rate of less than 10%. This dismal prognosis can be attributed to the limited clinical efficacy of systemic chemotherapy due to its high toxicity and consequent dose reductions. Targeted delivery of chemotherapeutic drugs to PDAC cells without affecting healthy non-tumor cells will largely reduce collateral toxicity leading to reduced morbidity and an increased number of PDAC patients eligible for chemotherapy treatment. To achieve targeted delivery in PDAC, several strategies have been explored over the last years, and especially the use of mesoporous silica nanoparticles (MSNs) seem an attractive approach. MSNs show high biocompatibility, are relatively easy to surface modify, and the porous structure of MSNs enables high drug-loading capacity. In the current systematic review, we explore the suitability of MSN-based targeted therapies in the setting of PDAC. We provide an extensive overview of MSN-formulations employed in preclinical PDAC models and conclude that MSN-based tumor-targeting strategies may indeed hold therapeutic potential for PDAC, although true clinical translation has lagged behind.

4.
Cancers (Basel) ; 13(13)2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34282781

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) has the worst survival rate of all cancers. This poor prognosis results from the lack of efficient systemic treatment regimens, demanding high-dose chemotherapy that causes severe side effects. To overcome dose-dependent toxicities, we explored the efficacy of targeted drug delivery using a protease-dependent drug-release system. To this end, we developed a PDAC-specific drug delivery system based on mesoporous silica nanoparticles (MSN) functionalized with an avidin-biotin gatekeeper system containing a protease linker that is specifically cleaved by tumor cells. Bioinformatic analysis identified ADAM9 as a PDAC-enriched protease, and PDAC cell-derived conditioned medium efficiently cleaved protease linkers containing ADAM9 substrates. Cleavage was PDAC specific as conditioned medium from leukocytes was unable to cleave the ADAM9 substrate. Protease linker-functionalized MSNs were efficiently capped with avidin, and cap removal was confirmed to occur in the presence of PDAC cell-derived ADAM9. Subsequent treatment of PDAC cells in vitro with paclitaxel-loaded MSNs indeed showed high cytotoxicity, whereas no cell death was observed in white blood cell-derived cell lines, confirming efficacy of the nanoparticle-mediated drug delivery system. Taken together, this research introduces a novel ADAM9-responsive, protease-dependent, drug delivery system for PDAC as a promising tool to reduce the cytotoxicity of systemic chemotherapy.

5.
Biology (Basel) ; 9(4)2020 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-32325664

RESUMO

Pancreatic cancer is a dismal disorder that is histologically characterized by a dense fibrotic stroma around the tumor cells. As the extracellular matrix comprises the bulk of the stroma, matrix degrading proteases may play an important role in pancreatic cancer. It has been suggested that matrix metalloproteases are key drivers of both tumor growth and metastasis during pancreatic cancer progression. Based upon this notion, changes in matrix metalloprotease expression levels are often considered surrogate markers for pancreatic cancer progression and/or treatment response. Indeed, reduced matrix metalloprotease levels upon treatment (either pharmacological or due to genetic ablation) are considered as proof of the anti-tumorigenic potential of the mediator under study. In the current review, we aim to establish whether matrix metalloproteases indeed drive pancreatic cancer progression and whether decreased matrix metalloprotease levels in experimental settings are therefore indicative of treatment response. After a systematic review of the studies focusing on matrix metalloproteases in pancreatic cancer, we conclude that the available literature is not as convincing as expected and that, although individual matrix metalloproteases may contribute to pancreatic cancer growth and metastasis, this does not support the generalized notion that matrix metalloproteases drive pancreatic ductal adenocarcinoma progression.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...